PROJETO DE FABRICAÇÃO DE RESERVATÓRIO COM CAPACIDADE DE 30.000 L EM PRFV PARA ARMAZENAMENTO DE ÁGUA POTÁVEL

CLIENTE: Morgui Construtora LTDA

CIDADE: Lontras - SC

SUMÁRIO

1 - Introdução	3
2 – Objetivo	
3 – Escopo de projeto	3
4 – Parâmetros de projeto	3
5 – Materiais de fabricação	4
6 -Propriedades mecânicas dos laminados	4
7 – Critérios de cálculos (Norma ASME RTP-1)	4
7.1 – Costado	5
7.2 – Fundo	7
8 – Tanques cilíndricos verticais sob pressão do vento	7
9 – Cálculos de chumbadores e cabos de ancoragem	8
9.1 – Especificações dos chumbadores	8
9.2 – Especificação dos cabos de aço	9
9.3 – Grampo para cabos de aço	9
10 – Descrição do equipamento	10
11 – Material de construção do reservatório	11
12 – Local de instalação	12
13 – Procedimento de ancoragem	12
14 – Manuseio dos tanques	14
15 – Garantias	14
16 – Anexos	15
17 – Referências bibliográficas	16

1 - INTRODUÇÃO

A **Bakof Tec** fabrica produtos em PRFV (Poliéster Reforçado em Fibra de Vidro) e PEMD (Polietileno de Média Densidade), além de desenvolver e executar projetos na área de Engenharia Sanitária e Ambiental visando à satisfação dos seus clientes, aliado qualidade e responsabilidade socioambiental. Para determinação dos cálculos estruturais foram utilizados os critérios técnicos estabelecidos pelas Normas NBR, ASME e alguns autores especialistas no processo de fabricação dos produtos.

2 - OBJETIVO

Vamos fazer uma breve descrição para demostrarmos os requisitos de fabricação de tanques em PRFV, estacionário para armazenamento de água, O processo de fabricação utilizado é com pistola (Spray Up) sendo aplicada resina poliéster com fibra de vidro picada.

3 - ESCOPO DE PROJETO

Estas especificações abrangem tanques tronco cônicos fabricados por Spray UP. Os requisitos incluídos são para materiais, propriedades, concepção, construção, dimensões, tolerâncias, e aparência. Os detalhes de fabricação do tanque estão de acordo com ASME RTP-1.

4 – PARÂMETROS DE PROJETO

- Diâmetro nominal do corpo= 3.060mm
- Altura do costado = 4.800mm
- Densidade do fluido armazenado (água) = 1.000Kg/m³

5 – MATERIAIS PARA FABRICAÇÃO

- Processo = Fibra picada (Spray UP)
- Roving = Picado TEX 4000
- Resina Estrutural = Ortoftálica

6 - PROPRIEDADES MECÂNICAS DOS LAMINADOS

A análise estrutural é feita em relação a um sistema de referência global x e y, para tanques cilíndricos o eixo na direção longitudinal do tanque é definido como sendo o eixo x, e o eixo na direção circunferência do tanque é definido como sendo o eixo y.

Abaixo, na tabela 1, seguem as propriedades dos laminados de fibras picadas.

Tabela 1 - Propriedades do laminado em fibras picadas

<i>Ex</i> = 70000 kg/cm ²
<i>Ey</i> = 70000 kg/cm ²
<i>Gxy</i> = 27000 kg/cm ²
$\vartheta yx = 0.3$
$\vartheta xy = 0.3$
$\alpha x 25,0x10^{-6}$ (I/°C)
αy 25,0 χ 10 ⁻⁶ (I/°C)
Fonte: Carvalho (2014)

7 – CRITÉRIOS DE CÁLCULO (NORMA ASME RTP-1)

A norma ASME RTP – 1 calcula a espessura de tanques utilizando valores para alongamento e as tensões médias nas direções x (axial) e y (circunferencial) do tanque.

BAKOF PLÁSTICOS LTDA. - Frederico Westphalen/RS - BR 386, KM 35 - CEP 98.400-000 Tel: (55) 3744-9900 - bakof@bakof.com.br | **BAKOF SC** - Joinville/SC | **BAKOF CE** - Tauá/CE - bakofce@bakof.com.br

Sua análise se dá no nível do laminado. A **tabela 2** a seguir mostra os valores utilizados pela norma.

Tabela 2 – Alongamento e Tensões admissíveis

Tipo do laminado	Direção y
Laminado de fibras picadas	$\sigma_{adm} = \sigma_{rup} / 10$
Laminado de fibras picadas	€adm=0,001

Fonte: Carvalho (2014)

Para o dimensionamento dos laminados de fibras picadas, a norma utiliza o critério de resistência.

Esta seção trata do dimensionamento estrutural de tanques verticais cilíndricos de fundo chato submetidos à pressão hidrostática exercida pelo fluído armazenado e submetidos à carga de vento. Os cálculos serão apresentados começando pelo costado, posteriormente para o fundo e por final serão verificados as instabilidades relacionadas com o vento.

7.1 – COSTADO

Para se efetuar este cálculo é necessário determinar a pressão hidrostática que o fluído armazenado exerce no tanque. Ver **figura 1**.

h

Figura 1 - Pressão hidrostática

Fonte: Carvalho (2014).

$$P = \rho \cdot g \cdot h$$

P = pressão hidrostática (N / m²)

 ρ = densidade do fluído armazenado (1000 Kg/m³)

g = aceleração da bravidade (9,80665 m/s²)

h = altura total do costado (4,80 m)

P = 1000 . 9,80665 . 4,80

 $P = 47071,92 \text{ N/m}^2$

Com a pressão é possível calcular a espessura do costado. Para o equilíbrio de unidades, o alongamento circunferencial E_y = 70.000Kg/m².

t = espessura do costado (m)

P = pressão hidrostática (N / m²)

 \emptyset = diâmetro do tanque (m)

εy = alongamento admissível na direção y (%)

Ey = Alongamento circunferencial (N / m²)

$$t = (P . \emptyset) / (2 . \epsilon_{adm} . E_y)$$

 $P = 47071,92 \text{ N/m}^2$

 $\emptyset = 3,140 \text{m}$

 $\varepsilon y = 0.001$

 $E_V = 70000 \text{Kg/cm}^2 = 6864655000 \text{N/m}^2$

t = (47071,92.3,140) / (2.0,001.6864655000)

t = 0.01077m = 10.77mm

7.2 – FUNDO

O fundo plano dos tanques geralmente é inteiramente apoiado e não precisa ser calculado porque o peso do fluido é transmitido diretamente sobre a base na qual o tanque se encontra apoiado. A norma ASME RTP-1 recomenda espessuras de fundo apresentadas na **tabela 3.**

Tabela 3 - Espessuras recomendadas

Diâmetro (mm)	Espessura total do fundo plano (mm)
Até 1800	4,5
Entre 1800 e 3800	6,5
Maior que 3800	9,5

Fonte: Carvalho (2014).

8 - TANQUES VERTICAIS CILÍNDRICOS SOB PRESSÃO DO VENTO

As cargas de vento são analisadas levando em conta dois tipos de esforços que o vento pode solicitar a estrutura, são eles:

- Pressão radial atuante no lado do cilindro que fica exposto ao vento;
- Pressão axial causada pelo momento fletor que tende a virar o cilindro no sentido oposto ao que o vento incide;

Segundo a Norma brasileira NBR 6123/1987, as forças devidas ao vento em edificações, a pressão dinâmica exercida pelo vento é dada pela seguinte expressão:

$$q = 0,613.Vk2$$

Onde:

q = pressão dinâmica do vento (N/m²)

Vk = velocidade característica do vento (m/s)

 $V_k = 45 \text{m/s} (NBR 6123/1987)$

 $q = 0.613 \cdot (45)^2$

 $q = 1241,325N/m^2$

9 - CÁLCULOSDOS CHUMBADORES E CABOS DE ANCORAGEM

Dados de projeto:

- Densidade do material armazenado = 1000Kg/m³ (água)
- Diâmetro do tanque = 3,14mm
- altura= 4,80m
- altura com tampa = 5,14

Considerações das cargas:

- carga do vento = 1,241KN/m²
- A carga do vento é do tipo superficial, com valor mínimo na base e máximo no topo.
- A resultante horizontal da carga do vento é do tipo concentrada e aplicada a 2/3 da base;
- A resultante horizontal da carga do vento obtida foi de 12,50KN;

M.FLETOR = resultante da carga do vento. $(2/3 \cdot h/\emptyset)$

M fletor = $12.5 \cdot (2/3 \cdot 4.80/3.06)$

M.FLETOR = 12,75 KN = 1300 Kgf

9.1 - ESPECIFICAÇÕES DOS CHUMBADORES

chumbador: 1/4" x 3"

resistência tração : 271Kgf

resistência ao corte : 151Kgf

TABELA 4 - CHUMBADORES PARA CONCRETO

Diāmetro	c	omprime	ntos	Furo	(1)	Distând (mi		Espessura máxima à	Chave	Torque de	Car permiss (kį	íveis (2)
da rosca (pol)	Parafuso (pol)	Jaqueta (mm)	Prolongador (mm)	Diâm . (pol - mm)	Profund. min (mm)	Fixador Fixador	Fixador Borda	fixar (mm)	(pol)	aperto (kgf.m)	Tração	Corte
4 /4"	2"	35	2	2/0" 0 5	55	105	53	8	7/10"	10	271 **	150
1/4"	3"	35	25	3/8"-9,5	80	180	90	٥	7/16"	1,0	271 **	152
E /40"	2.1/4"	38	-	1 /0" 12	62	114	57	7	1 /0"	2.5	413	051
5/16"	3.1/4"	38	28	1/2"- 13	87	198	99	,	1/2"	2,5	487	251
2 /0"	2.1/2"	40		0/16" 14	68	120	60	16	0/16"	E 0	518	371
3/8"	3.1/2"	40	30	9/16"-14	88	210	105	14	9/16"	5,0	687	3/1
1/2"***	3"	50		2/4" 10	80	150	75	18	2/4"	0.0	790	690
1/2	4.1/2"	50	40	3/4"- 19	119	270	135	20	3/4"	8,0	1.018	690
E /0"	3.1/2"	60	-	7/0" 00	93	180	90	18	45/40"	15	943	1.005
5/8"	5"	60	50	7/8"-22	132	330	165	14	15/16"	15	1.405	1.095
2/4"	4.1/2"	80		4" 00	119	240	120	19	4 4 /0"	25	1.070	4 000
3/4"	6.1/2"	80	70	1"- 26	170	450	225	10	1.1/8"	35	1.573	1.620
4."	6"	100		1.1/4"-	157	300	150	35	4.4.0"	F0	1.911	2.022
1"	9"	100	87	32	233	561	281	30	1.1/2"	50	2.535	2.933

Fonte: http://parafusosbertoldi.com.br/produto/chumbadores-para-concreto/

9.2 - ESPECIFICAÇÕES DOS CABOS DE AÇO

- diâmetro: 1/4"

- resistência tração : 1430Kgf

- resistência à ruptura: 2160Kgf

TABELA 5 – CABOS DE AÇO

Diâmetro Carga de Ruptura Kgf Peso Aprox Pol. mm SM HS Kg/m 1/8 3,20 580 790 0,082 3/16 4,76 860 1,290 0,108 1/4 6,35 1,430 2,160 0,180					
Pol. mm SM HS Kg/m 1/8 3,20 580 790 0,082 3/16 4,76 860 1,290 0,108	Diâm	etro	Carga de Ri	Peso Aprox.	
3/16 4,76 860 1.290 0,108	Pol.	mm	SM	HS	10000000
	1/8	3,20	580	790	0,082
1/4 6.05 1.400 0.160 0.100	3/16	4,76	860	1.290	0,108
1/4 0,35 1.430 2.100 0,100	1/4	6,35	1.430	2.160	0,180
5/16 7,94 2.430 3.630 0,305	5/16	7,94	2.430	3.630	0,305
3/8 9,53 3.160 4.910 0,406	3/8	9,53	3.160	4.910	0,406
7/16 11,11 4.250 6.590 0,593	7/16	11,11	4.250	6.590	0,593
1/2 12,70 5.500 8.550 0,769	1/2	12,70	5.500	8.550	0,769
5/8 15,88 8.660 13.420 1,209	5/8	15,88	8.660	13.420	1,209

Fonte: http://www.torame.com.br/cordoalhas-lacos-e-cintas-em-sao-paulo/

9.3 – GRAMPOS PARA OS CABOS DE AÇO

modelo de grampo: Leve

BAKOF PLÁSTICOS LTDA. - Frederico Westphalen/RS - BR 386, KM 35 - CEP 98.400-000 Tel: (55) 3744-9900 - bakof@bakof.com.br | **BAKOF SC** - Joinville/SC | **BAKOF CE** - Tauá/CE - bakofc@bakof.com.br

- nº de grampos por cabo: 03
- espaçamento mínimo entre grampos: 38mm

TABELA 6 – GRAMPOS PARA CABO DE AÇO

QUANTIDADE DE GRAMPOS PARA CADA DIÂMETRO DO CABO

Diâmetro	do Cabo	Grampo Leve		Grampo Pesado	
(mm)	(pol)	Número de Grampos	Espaçamento Mínimo (mm)	Número de Grampos	Espaçamento Mínimo (mm)
4,8	3/16"	3	30	2	329
6,4	1/4"	3	38	2	38
8,0	5/16"	4	48	2	48
9,5	3/8"	4	57	2	57
11,5	7/16"	4	67	2	67
13,0	1/2"	5	76	3	76
16,0	5/8"	5	95	3	95
19,0	3/4"	6	114	4	114
22,0	7/8"	7	133	4	133
26,0	1"	7	152	5	152
29,0	1.1/8"	N/R	N/R	6	172
32,0	1.1/4"	N/R	N/R	7	191
35,0	1.3/8"	N/R	N/R	7	210
38,0	1.1/2"	N/R	N/R	8	229

Nota: Os grampos deverão ser reapertados após o ínicio do uso do Cabo de Aço.

Fonte: http://www.siva.com.br/grampos-cabos-aco

10 - DESCRIÇÃO DO EQUIPAMENTO

- Reservatório tronco-cônico, fabricado em PRFV (poliéster reforçado com fibra de vidro) pelo processo de Spray UP (fibras picadas), com fundo plano e tampo esférico;
- Barreira química: Gel isoftálico;
- Laminado estrutural: produzido pelo processo de Spray Up, para resistir esforços externos atuantes garantindo a estabilidade do produto;
- Acabamento: Pintura a base de gel coat com proteção para radiação UV.
- Boca de inspeção superior 600mm.

11 - MATERIAIS DE CONSTRUÇÃO DO RESERVATÓRIO

- Resina Ortoftálica L-120 GR ou similar

Ensaio	Inferior	Superior	Unidade
Viscosidade Brookfild	250	350	ср
Tempo de Gel (25°C)	6	8	minutos
Temperatura de exotermia	150	190	°C
Intervalo de reação	5	10	minutos
Tixotropia	1,30	2,30	mínimo
Sólidos	56	60	%
Aparência	castanho	castanho	-

- Gel Coat Az BKF interno-ONU 1866CLA3 ou similar

Ensaio	Inferior	Superior	Unidade
Viscosidade Brookfild	2200	2800	ср
Tempo de Gel (25°C)	8	12	minutos
Temperatura de exotermia	100	180	°C
Intervalo de reação	15	30	minutos
Tixotropia	4,5	0	minimo

- Gel Coat Az BKF externo-ONU 1866CLA3 ou similar

Ensaio	Inferior	Superior	Unidade
Viscosidade Brookfild	2200	2800	ср
Tempo de Gel (25°C)	4,5	6	minutos
Temperatura de exotermia	100	180	°C
Intervalo simples	15	30	minutos
Tixotropia	4,5	0	n/d

- Sistema de catálise - Peróxido de metil etil cetona - Brasnox DM-50E RED ou similar

Análise	Especificações	Resultado	Método
Aspecto Visual	L.L.V.	OK	LCQ17
Oxigênio Ativo (%)	8,8 - 9,0	9,0	LCQ01
Densidade (G/cm³)	1,14 - 1,18	1,16	LCQ08

- Desmoldande - Desmold Tecglaze-N 16 ou similar

Análise	Especificações	Resultado	Método
Aspecto Visual	PASTA AMARELADA	OK	LCQ17
PONTO DE FUSÃO (°C)	62 - 67	62	LCQ11

Tipo de carga (quando permitido) – Sílica

Itens	Especificação	Unidade
Aparência	Pó branco	-
Teor de SiO2	99,8	%
Área específica	200-225	m²/K
рН	3,6 – 4,3	-
Densidade	30 - 60	g/m³
Perda por secagem	2,0	%
Perda por ignição	2,0	%

12 - LOCAL DE INSTALAÇÃO

O tanque deve ser instalado sobre base plana, nivelada, lisa e livre de resíduos, elaborada em concreto armado, sob orientação de engenheiro civil, de modo a suportar o peso total do mesmo, considerando o peso do material a ser armazenado quando este estiver completamente cheio.

13 - PROCEDIMENTO DE ANCORAGEM

- Posicionar o reservatório sobre uma base plana (concreto).
- Passar cabo de aço 1/4" nos pontos de ancoragem disponíveis na parte superior do reservatório, fixando o cabo de aço com grampo.
- Utilizar chumbador 1/4" x 3" para fixar uma das extremidades do cabo na base de concreto. Após efetuar o laço ao redor do parafuso, deixar cabo suficiente para fixá-lo com grampo de aço. Posterior à fixação dos grampos, certificar-se de que os mesmos encontram-se totalmente presos.

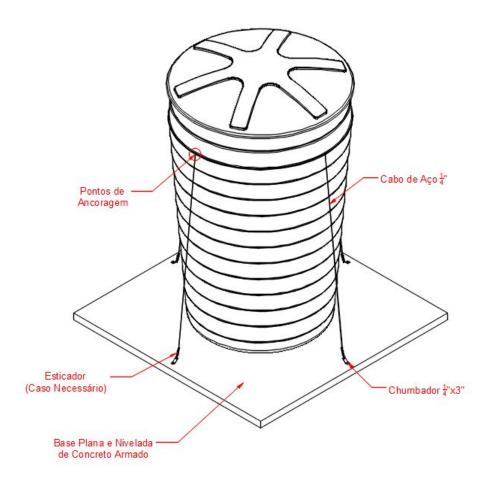

- Caso seja necessário maior tensão do cabo de aço, utilizar esticador compatível.
- Para a fixação da tampa junto ao reservatório, os parafusos devem ser colocados ou fixados em todos os pontos disponíveis.
- Este procedimento é uma orientação para ancoragem e fixação da tampa. A responsabilidade pela movimentação, instalação e materiais utilizados para ancoragem do reservatório são de incumbência do engenheiro/técnico responsável pela obra.

Figura 2: Procedimento de colocação dos chumbadores

MÉTODO DE APLICAÇÃO Faça o furo com diâmetro e profundidade indicados. Limpe o furo. Introduza o chumbador montado e ajustado. Dê o aperto para provocar sua expansão. Retire o parafuso e arruela. Posicione a peça a fixar, recoloque o parafuso e arruela dando o devido aperto.

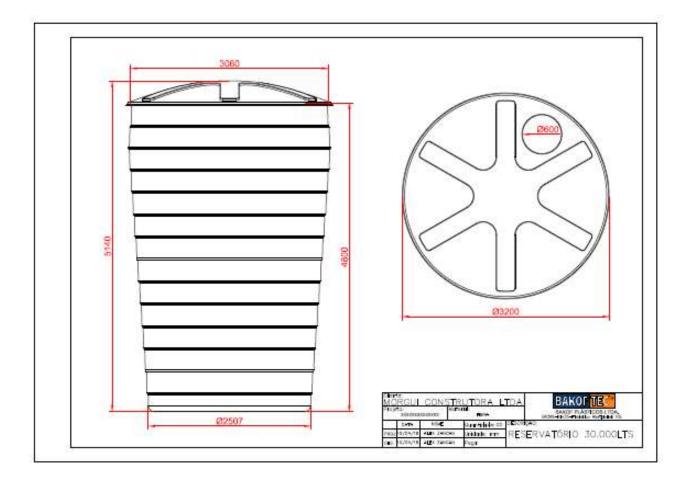
Figura 3: Procedimento de ancoragem

14 - MANUSEIO DOS TANQUES

O tanque é produzido em PRFV (poliéster reforçado em fibra de vidro), e deve ser manuseado com cuidado, evitando batidas ou vibrações em excesso em seu entorno.

O tanque deve ser içado do caminhão até o local de instalação, usando cintas.

15 - GARANTIAS


O Reservatório de Fibra de Vidro possui uma garantia de 02 anos (24meses) a contar da data de emissão da nota fiscal contra falhas decorrentes da fabricação, considera-se falha estrutural, fissuras ou rachaduras que permitem vazamentos e que tenham sua origem na fabricação do equipamento.

BAKOF PLÁSTICOS LTDA. - Frederico Westphalen/RS - BR 386, KM 35 - CEP 98.400-000 Tel: (55) 3744-9900 - bakof@bakof.com.br | **BAKOF SC** - Joinville/SC | **BAKOF CE** - Tauá/CE - bakofce@bakof.com.br

16 – ANEXO

- PROJETO

17- REFERÊNCIAS BIBLIOGRÁFICAS

- CARVALHO, Antônio. Compósitos para uso industrial.:, 2014.
- AMERICAN SOCIETY OF MECHANICAL ENGINEERS. ASME RTP-1-2005:
 Reinforced. Thermoset Plastic Corrosion Resistant E New York: An American National Standard, 2013.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123/1987: Forças devidas ao vento em edificações. Rio de Janeiro: 1987.